CHROMSYMP. 421

STUDY OF GAS CHROMATOGRAPHIC BEHAVIOUR OF ALKENES BASED ON MOLECULAR ORBITAL CALCULATIONS

A. GARCÍA-RASO* and F. SAURA-CALIXTO

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Palma de Mallorca, Palma de Mallorca (Spain)

and

M. A. RASO

Departamento de Estructura Atómico-Molecular y Espectroscopía, Facultad de Ciencias, Universidad Complutense de Madrid, Madrid (Spain)

SUMMARY

Molecular orbital calculations were used to study the gas chromatographic retention of *n*-alkenes (1-ene, *cis*- and *trans*-2-, 3-, 4-, 5- and 6-enes). Using the retention index (*I*), where $I = I_m + I_i$ (I_m = molecular contribution, I_i = solute-stationary phase interaction), the influence of molecular parameters such as total energy (E_T), binding energy (E_b), excess-charge distribution (δ) and values of the energy and coefficients of highest occupied (HOMO) and lowest unoccupied (LU-MO) molecular orbitals were considered. E_T and E_b represent the I_m term and E_{HOMO} and HOMO-LUMO interactions, defined by Klopman's equation, are directly related to the I_i term of the retention index. General equations including several homologous series (*cis* and *trans* isomers) are presented.

INTRODUCTION

Several workers have studied the gas chromatographic behaviour of alkenes and provided different correlations between the retention index (I) and the molecular structure of these compounds¹⁻¹¹. Takács *et al.*¹ separated the retention index into two additive components: molecular (I_m) and interaction (I_i) contributions. Sanz *et al.*² used an additive calculation method that considered the contribution of the different structural units of molecules. Papazova and Dimov^{3,4} predicted I values with the aid of a physico-chemical index (PCI) and a structural number correction. Soják and co-workers⁵⁻⁷ presented a detailed analytical study on the behaviour of alkenes that considered structural increments such as position of the double bonds, differences between spatial isomers and column temperature. Similar considerations were used by Rang *et al.*⁸. Chrétien and co-workers⁹⁻¹¹ applied the Darc-Pelco method in their topological analysis of alkenes. This method is partially conventional but it does not assume *a priori* subdivision of the Kováts retention index. Buydens *et al.*¹² used the complete neglect of differential overlap (CNDO/2) method to correlate I and quantum chemical parameters. From these papers it is apparent that the Kováts retention index (I) depends on two principal factors: molecular contributions and interactions between the molecule and the stationary phase. These factors were treated by using different parameters and calculation methods.

The purpose of this study was to consider the gas chromatographic behaviour of alkenes as a molecular phenomenon that could be investigated by means of molecular orbital (MO) calculations to establish which electronic and orbital parameters are required for a determination of the retention index.

EXPERIMENTAL

Kováts retention indices (1) of alkenes on squalane (100°C) were taken from Dubois *et al.*¹⁰. Molecular parameters of orbitals were calculated by the CNDO/2 method (Fig. 1). Lengths and angles of bonds were taken from the *Handbook of Chemistry and Physics*¹³. The coordinate origin was located on a carbon atom of the double bond for all calculations. An example is shown in Fig. 2.

Fig. 1. Method of calculating molecular orbital parameters.

Fig. 2. Spatial distribution of different atoms for alkenes. Top: cis-2-hexene; bottom: trans-2-hexene.

RESULTS AND DISCUSSION

Molecular contribution

To determine which MO magnitudes are directly related to the chromatographic retention of alkenes, total energy (E_T) , binding energy (E_b) , energy of lowest unoccupied and highest occupied MOs $(E_{LUMO} \text{ and } E_{HOMO})$, excess-charge distribution (δ) and the corresponding orbital coefficients of HOMO and LUMO orbitals $(C_{HOMO}$ and $C_{LUMO})$ were calculated by CNDO/2. The values of these parameters are listed in Table I.

Plots of *I vs.* $E_{\rm T}$ or $E_{\rm b}$ for homologous series yield straight lines with high correlation coefficients (>0.999) and low standard deviations in all instances. Some examples are shown in Fig. 3. Table II shows the corresponding equations and statistical data.

No significant correlations were found when other parameters (E_{HOMO} , E_{LUMO} and δ) were used, a fact also confirmed by the present authors for several homologous series of esters¹⁴. Generally, the gas chromatographic retention of alkenes is principally determined by $E_{\rm T}$ or $E_{\rm b}$.

Analysts generally use I vs. molecular parameters for the homologous series listed in Table II. Thus, eleven straight lines are employed. It is possible to obtain

MOLECULAR ORBITAL VALUES OF ALKENES (CNDO/2)

 $E_{\rm T}$ = total energy; $E_{\rm b}$ = binding energy; $E_{\rm HOMO}$, $E_{\rm LUMO}$ = energy of highest occupied and lowest unoccupied molecular orbitals; E = interaction energy (Klopman's equation, see eqn. 7).

Compound	E_T	E_b	Еномо	E _{lumo}	Coefficient of p_z of LUMO of $C^1 = C^2$		$-\Delta E$	Excess-charge distribution of $C^1 = C^2$	
					C^1	<i>C</i> ²	-	C^1	<i>C</i> ²
Ethene	- 17.058	- 2.173	-0.5863	0.1976	0.7071	0.7071	- 5.061	-0.031	-0.031
Propene	- 25.761	- 3.433	-0.5182	0.1830	0.6665	-0.6447	-4.699	-0.055	0.014
1-Butene	- 34.445	- 4.676	-0.5181	0.1832	0.6660	-0.6442	- 5.684	-0.055	0.012
1-Pentene	- 43.130	- 5.917	-0.5180	0.1836	0.6659	-0.6436	-4.671	-0.055	0.010
1-Hexene	- 51.814	- 7.159	-0.5081	0.1841	0.6657	-0.6436	-4.657	-0.055	0.010
1-Heptene	- 60.498	- 8.401	-0.4944	0.1845	0.6657	-0.6437	-4.648	-0.055	0.010
1-Octene	- 69.182	- 9.642	-0.4837	0.1847	0.6656	-0.6439	-4.643	-0.055	0.010
1-Nonene	- 77.866	-10.884	-0.4754	0.1849	0.6656	-0.6439	-4.638	-0.055	0.010
1-Decene	- 86.550	-12.126	-0.4689	0.1850	0.6656	-0.6440	-4.637	-0.055	0.010
1-Undecene	- 95.235	-13.368	-0.4637	0.1850	0.6656	-0.6440	-4.637	-0.055	0.010
1-Dodecene	- 103.919	-14.609	-0.4594	0.1851	0.6656	-0.6440	-4.634	-0.055	0.010
1-Tridecene	-112.603	-15.851	-0.4559	0.1851	0.6656	-0.6441	-4.635	-0.055	0.010
1-Tetradecene	-121.287	-17.093	-0.4530	0.1851	0.6657	-0.6440	-4.635	-0.055	0.010
cis-2-Butene	- 34.465	- 4.695	-0.4906	0.1715	0.6189	-0.6189	-4.467	-0.006	-0.006
cis-2-Pentene	- 43.150	- 5.938	-0.4890	0.1722	0.6202	-0.6218	4.479	-0.006	-0.009
cis-2-Hexene	- 51.834	- 7.179	-0.4889	0.1727	0.6196	-0.6210	-4.456	-0.005	-0.013
cis-2-Heptene	- 60.518	- 8.421	-0.4885	0.1731	0.6194	-0.6211	-4.445	-0.006	-0.013
cis-2-Octene	- 69.202	- 9.663	-0.4882	0.1734	0.6192	-0.6212	-4.437	-0.006	-0.013
cis-2-Nonene	- 77.887	-10.904	-0.4881	0.1736	0.6192	-0.6213	-4.432	-0.006	-0.013
cis-2-Decene	- 86.571	-12.146	-0.4734	0.1738	0.6191	-0.6213	-4.426	-0.006	-0.013

cis-2-Undecene	- 95.255	-13.388	-0.4672	0.1739	0.6191	-0.6214	-4.425	-0.006	-0.013
cis-2-Dodecene	- 103.939	-14.630	-0.4622	0.1739	0.6191	-0.6214	-4.425	-0.006	-0.013
cis-2-Tridecene	-112.623	-15.871	-0.4582	0.1740	0.6191	-0.6214	-4.422	-0.006	-0.013
trans-2-Butene	- 34.462	-4.692	-0.4808	0.1691	0.6208	-0.6208	-4.558	-0.006	-0.006
trans-2-Pentene	- 43.148	- 5.934	-0.4791	0.1698	0.6224	-0.6236	-4.572	-0.006	-0.010
trans-2-Hexene	- 51.831	- 7.176	- 0.4790	0.1703	0.6219	-0.6229	-4.549	-0.006	0.014
trans-2-Heptene	- 60.515	- 8.418	-0.4786	0.1707	0.6216	-0.6229	-4.537	-0.006	-0.014
trans-2-Octene	- 69.199	- 9.660	-0.4783	0.1710	0.6215	-0.6230	-4.529	-0.007	-0.014
trans-2-Nonene	- 77.883	-10.901	-0.4778	0.1712	0.6214	-0.6231	-4.523	-0.007	-0.014
trans-2-Decene	- 86.567	-12.143	-0.4706	0.1713	0.6213	-0.6232	-4.521	-0.007	-0.014
trans-2-Undecene	- 95.252	-13.384	-0.4648	0.1714	0.6213	-0.6232	-4.518	-0.006	-0.013
trans-2-Dodecene	-103.936	-14.626	-0.4603	0.1715	0.6213	-0.6232	-4.515	-0.007	-0.014
trans-2-Tridecene	-112.620	-15.868	-0.4566	0.1715	0.6213	-0.6233	-4.516	-0.007	-0.014
trans-2-Tetradecene	-121.304	-17.110	-0.4535	0.1716	0.6213	-0.6233	-4.513	-0.007	-0.014
cis-3-Hexene	- 51.835	- 7.179	-0.4869	0.1720	0.6238	-0.6238	-4.525	-0.010	-0.010
cis-3-Heptene	- 60.519	- 8.422	-0.4868	0.1724	0.6232	-0.6230	-4.504	-0.010	-0.013
cis-3-Octene	- 69.203	- 9.663	-0.4864	0.1729	0.6229	-0.6230	-4.533	-0.010	-0.013
cis-3-Nonene	- 77.887	-10.904	-0.4861	0.1732	0.6228	-0.6231	- 4.481	-0.010	-0.013
cis-3-Decene	- 86.571	-12.147	0.4814	0.1734	0.6227	-0.6232	-4.476	-0.010	-0.013
cis-3-Undecene	- 95.255	-13.388	-0.4736	0.1735	0.6227	-0.6233	-4.474	-0.010	-0.013
cis-3-Dodecene	-103.940	-14.630	-0.4674	0.1736	0.6227	-0.6233	-4.472	-0.010	-0.013
cis-3-Tridecene	-112.624	-15.871	-0.4624	0.1737	0.6226	-0.6234	-4.469	-0.010	-0.013
cis-3-Tetradecene	-121.308	-17.114	-0.4584	0.1737	0.6226	-0.6234	4.469	-0.010	-0.013
trans-3-Hexene	- 51.832	- 7.177	-0.4776	0.1705	0.6251	-0.6251	-4.584	-0.010	-0.010
trans-3-Heptene	- 60.516	- 8.419	-0.4775	0.1710	0.6246	-0.6244	-4.561	-0.010	-0.014
trans-3-Octene	- 69.200	- 9.660	-0.4771	0.1714	0.6243	-0.6244	-4.549	-0.010	-0.013
trans-3-Nonene	- 77.884	-10.902	-0.4768	0.1717	0.6242	-0.6245	-4.541	-0.011	0.014
trans-3-Decene	- 86.568	-12.144	-0.4729	0.1719	0.6241	-0.6246	-4.535	-0.011	-0.013
trans-3-Undecene	- 95.252	-13.385	-0.4670	0.1720	0.6241	-0.6247	-4.533	-0.011	-0.013
trans-3-Dodecene	-103.936	-14.627	-0.4622	0.1721	0.6240	-0.6247	-4.530	-0.011	-0.013

(Continued on p. 112)

TABLE I	(continued)
---------	-------------

Compound	E _T	E_b	Еномо	E _{LUMO}	Coefficient LUMO of	Coefficient of p_z of $-\Delta E$ Excess-chu LUMO of $C^1 = C^2$ of $C^1 = C$		Excess-chan of $C^1 = C^2$	rge distribution
					$\overline{C^1}$	<i>C</i> ²	-	C ¹	C^2
trans-3-Tridecene	-112.621	-15.869	-0.4582	0.1722	0.6240	-0.6247	-4.527	-0.011	-0.013
trans-3-Tetradecene	-121.305	-17.111	-0.4549	0.1722	0.6240	-0.6247	-4.527	-0.011	-0.013
cis-4-Octene	- 69.203	- 9.663	-0.4867	0.1729	0.6224	-0.6224	-4.481	-0.013	-0.013
cis-4-Nonene	- 77.887	-10.905	-0.4863	0.1733	0.6221	-0.6224	-4.468	-0.013	-0.013
cis-4-Decene	- 86.571	-12.146	-0.4860	0.1736	0.6220	-0.6225	-4.461	-0.014	-0.013
cis-4-Undecene	- 95.255	-13.388	-0.4812	0.1738	0.6219	-0.6226	-4.456	-0.014	-0.013
cis-4-Dodecene	-103.940	-14.630	-0.4734	0.1739	0.6219	-0.6239	-4.454	-0.014	-0.013
trans-4-Octene	- 69.200	- 9.660	-0.4775	0.1714	0.6239	-0.6239	-4.542	-0.014	-0.013
trans-4-Nonene	- 77.884	-10.902	-0.4771	0.1718	0.6236	-0.6239	-4.529	-0.014	-0.013
trans-4-Decene	- 86.568	-12.144	-0.4749	0.1721	0.6234	-0.6240	-4.521	-0.014	-0.013
trans-4-Undecene	- 95.252	-13.385	-0.4689	0.1723	0.6234	-0.6241	-4.516	-0.014	-0.013
trans-4-Dodecene	-103.936	-14.627	-0.4639	0.1725	0.6233	-0.6242	-4.511	-0.014	-0.013
cis-5-Decene	- 86.571	-12.147	-0.4859	0.1737	0.6222	-0.6222	-4.457	-0.013	-0.013
cis-5-Undecene	- 95.255	-13.388	-0.4856	0.1740	0.6220	-0.6223	-4.449	-0.013	-0.013
cis-5-Dodecene	-103.940	-14.630	-0.4809	0.1742	0.6220	-0.6224	-4.445	-0.013	-0.013
cis-5-Tridecene	-112.624	-15.872	-0.4732	0.1744	0.6219	-0.6224	-4.439	-0.014	-0.013
trans-5-Decene	- 86.568	-12.144	-0.4755	0.1723	0.6236	-0.6236	-4.514	-0.014	-0.014
trans-5-Undecene	- 95.252	-13.385	-0.4700	0.1725	0.6235	-0.6237	-4.509	-0.014	-0.014
trans-5-Dodecene	-103.936	- 14.627	-0.4652	0.1727	0.6234	-0.6238	-4.503	-0.014	-0.014
trans-5-Tridecene	-112.621	-15.869	-0.4611	0.1729	0.6233	-0.6239	-4.498	-0.014	-0.013
cis-6-Dodecene	-103.940	-14.630	-0.4853	0.1743	0.6221	-0.6221	-4.441	-0.013	-0.013
cis-6-Tridecene	-112.624	-15.872	-0.4806	0.1745	0.6221	-0.6222	-4.436	-0.013	-0.013
cis-6-Tetradecene	-121.308	-17.113	-0.4731	0.1746	0.6220	-0.6223	-4.434	-0.014	-0.013
trans-6-Dodecene	-103.936	-14.627	-0.4657	0.1728	0.6236	-0.6236	-4.501	-0.014	-0.014
cis-6-Tridecene	-112.621	-15.869	-0.4619	0.1730	0.6235	-0.6237	-4.496	-0.014	-0.014
trans-6-Tetradecene	-121.305	-17.110	-0.4585	0.1731	0.6234	-0.6237	-4.492	-0.014	-0.014

Fig. 3. Plots showing straight lines of $I vs. E_T$ corresponding to different homologous series of *n*-alkenes. \bullet , 1-enes; \blacksquare , *cis*-2-enes; \blacktriangle , *trans*-2-enes.

general equations by using total energy (one for 1-enes and another one for all *cis*and *trans*-alkene isomers). Thus, E_T or E_b could represent the general chromatographic behaviour of alkenes, because different homologous series can be described by a single equation:

1-enes: $I = -11.509 E_{T} - 13.069$ (1) (N = 13, r = 1.0000, s = 2.20, F = 376008.58)cis- and trans-alkenes: $I = -11.250 E_{T} + 15.142$ (2) (N = 62, r = 0.9995, s = 8.06, F = 66470.55) or 1-enes: $I = -80.454 E_{b} + 7.475$ (3) (N = 13, r = 1.0000, s = 1.95, F = 480314.52)

TABLE II

I vs. E_b AND I vs. E_T EQUATIONS AND STATISTICS

Equation	N	r	s	F
$I = -80.454E_{\rm b} + 7.474$	13	1.0000	1.95	480314.52
$I = -79.560E_{\rm b} + 36.284$	10	0.9999	3.55	64077.30
$I = -80.105E_{\rm b} + 24.803$	11	1.0000	2.28	208554.75
$I = -79.490E_{\rm b} + 19.118$	9	0.9994	9.80	6104.23
$I = -79.916E_{\rm b} + 13.402$	9	0.9995	8.90	7465.15
$I = -78.755E_{\rm b} + 26.695$	5	1.0000	0.68	207690.52
$I = -79.721E_{\rm b} + 14.396$	5	1.0000	0.51	377926.81
$I = -78.441E_{\rm b} + 28.402$	4	1.0000	0.54	163823.16
$I = -79.327E_{\rm b} + 20.429$	4	1.0000	0.42	272262.79
$I = -77.930E_{b} + 34.757$	3	1.0000	0.56	59160.99
$I = -78.977E_{\rm b} + 24.307$	3	1.0000	0.24	344155.51
$I = -11.509E_{\rm T} - 13.069$	13	1.0000	2.20	376008.58
$I = -11.416E_{\rm T} + 15.564$	10	0.9999	4.18	46147.70
$I = -11.454E_{\rm T} + 6.007$	11	1.0000	2.26	213535.11
$I = -11.379E_{\rm T} + 2.422$	9	1.0000	1.16	439070.21
$I = -11.437E_{\rm T} - 3.548$	9	1.0000	1.00	587727.94
$I = -11.261E_{\rm T} + 8.453$	5	1.0000	0.68	209430.45
$I = -11.399E_{\rm T} - 4.299$	5	1.0000	0.52	358941.46
$I = -11.215E_{\rm T} + 10.263$	4	1.0000	0.57	148226.80
$I = -11.147E_{\rm T} + 1.912$	4	1.0000	0.46	231555.41
$I = -11.147E_{\rm T} + 16.187$	3	1.0000	0.49	78086.33
$I = -11.291E_{\rm T} + 5.988$	3	1.0000	0.20	461463.52
	Equation $I = -80.454E_{b} + 7.474$ $I = -79.560E_{b} + 36.284$ $I = -80.105E_{b} + 24.803$ $I = -79.490E_{b} + 19.118$ $I = -79.916E_{b} + 13.402$ $I = -78.755E_{b} + 26.695$ $I = -79.721E_{b} + 14.396$ $I = -78.441E_{b} + 28.402$ $I = -79.327E_{b} + 20.429$ $I = -77.930E_{b} + 34.757$ $I = -78.977E_{b} + 24.307$ $I = -11.509E_{T} - 13.069$ $I = -11.416E_{T} + 15.564$ $I = -11.437E_{T} - 3.548$ $I = -11.261E_{T} + 8.453$ $I = -11.25E_{T} + 10.263$ $I = -11.417E_{T} + 1.912$ $I = -11.291E_{T} + 5.988$	EquationN $I = -80.454E_b + 7.474$ 13 $I = -79.560E_b + 36.284$ 10 $I = -79.490E_b + 36.284$ 10 $I = -79.490E_b + 19.118$ 9 $I = -79.916E_b + 13.402$ 9 $I = -79.721E_b + 14.396$ 5 $I = -79.721E_b + 14.396$ 5 $I = -79.327E_b + 20.429$ 4 $I = -77.930E_b + 34.757$ 3 $I = -71.450E_T - 13.069$ 13 $I = -11.450E_T - 13.069$ 13 $I = -11.454E_T + 6.007$ 11 $I = -11.437E_T - 3.548$ 9 $I = -11.251E_T + 10.263$ 4 $I = -11.215E_T + 10.263$ 4 $I = -11.147E_T + 1.912$ 4 $I = -11.147E_T + 16.187$ 3 $I = -11.291E_T + 5.988$ 3	EquationNr $I = -80.454E_b + 7.474$ 131.0000 $I = -79.560E_b + 36.284$ 100.9999 $I = -80.105E_b + 24.803$ 111.0000 $I = -79.490E_b + 19.118$ 90.9994 $I = -79.916E_b + 13.402$ 90.9995 $I = -79.916E_b + 13.402$ 90.9995 $I = -79.721E_b + 14.396$ 51.0000 $I = -77.721E_b + 14.396$ 51.0000 $I = -77.30E_b + 20.429$ 41.0000 $I = -77.930E_b + 34.757$ 31.0000 $I = -78.977E_b + 24.307$ 31.0000 $I = -11.454E_T + 6.007$ 111.0000 $I = -11.454E_T + 6.007$ 111.0000 $I = -11.437E_T - 3.548$ 91.0000 $I = -11.261E_T + 8.453$ 51.0000 $I = -11.215E_T + 10.263$ 41.0000 $I = -11.291E_T + 5.988$ 31.0000	EquationNrs $I = -80.454E_b + 7.474$ 131.00001.95 $I = -79.560E_b + 36.284$ 100.99993.55 $I = -80.105E_b + 24.803$ 111.00002.28 $I = -79.490E_b + 19.118$ 90.99949.80 $I = -79.916E_b + 13.402$ 90.99958.90 $I = -79.721E_b + 14.396$ 51.00000.68 $I = -77.721E_b + 14.396$ 51.00000.51 $I = -77.30E_b + 20.429$ 41.00000.54 $I = -77.930E_b + 34.757$ 31.00000.24 $I = -71.30E_b + 24.307$ 31.00000.220 $I = -11.45E_T + 15.564$ 100.99994.18 $I = -11.45E_T + 6.007$ 111.00002.26 $I = -11.437E_T - 3.548$ 91.00001.16 $I = -11.261E_T + 8.453$ 51.00000.52 $I = -11.215E_T + 10.263$ 41.00000.52 $I = -11.215E_T + 10.263$ 41.00000.52 $I = -11.47E_T + 5.988$ 31.00000.49

N = Number of compounds employed; r = correlation coefficient; s = standard deviation; F = experimental value of Snedecor test.

cis- and *trans-*alkenes: $I = -78.661 E_b + 32.946$ (N = 62, r = 0.9994, s = 9.47, F = 48164.18)

(4)

In our opinion, eqns. 2 and 4 have an interesting physico-chemical significance, but for analytical purposes the equations indicated in Table II or calculated by other workers^{2-7,10} may be more practical.

Solute-stationary phase interactions

The second factor determining the retention index value is the interaction factor. Electronic parameters, such as charge density (δ), have no significant influence on the interaction factor, because the calculated values (CNDO/2) for all carbon and hydrogen atoms of each compound are virtually zero and are very similar.

This interaction factor could be studied from MO calculations, considering interactions between HOMO or LUMO orbitals, because these are the principal determinants of physico-chemical interactions of the different alkenes with the stationary phase.

These interactions can be studied by means of Klopman's equation^{15,16}:

$$-\Delta E = \frac{2\Sigma C_{\text{HOMO}}^2 C_{\text{LUMO}}^2 \beta^2}{E_{\text{HOMO}} - E_{\text{LUMO}}}$$
(5)

where $C_{\text{HOMO}} = \text{coefficient of HOMO}$, $C_{\text{LUMO}} = \text{coefficient of LUMO}$, $\beta = \text{over-lapping integral}$, $E_{\text{HOMO}} = \text{energy of HOMO}$, $E_{\text{LUMO}} = \text{energy of LUMO}$ and $-\Delta E = \text{interaction energy}$.

Two possibilities may be considered. First, interaction between HOMO of the alkene and LUMO of the stationary phase; this is not possible, because different atomic orbitals appear, depending on the alkene. Thus, for example, in *trans*-2-butene only the p_z orbital has significance, whereas in *trans*-2-nonene s, p_x and p_y orbitals should be considered (see Table III).

TABLE III

Compound	номо а	of C^1			HOMO of C^2			
	S	p _x	p _y	<i>p</i> _z	\$	p _x	p _y	<i>p</i> _z
trans-2-Butene	0.000	0.000	0.000	-0.568	0.000	0.000	0.000	-0.568
trans-2-Heptene	0.000	0.000	0.000	-0.552	0.000	0.000	0.000	-0.551
trans-2-Nonene	-0.048	-0.182	-0.128	0.000	0.067	0.239	0.194	0.000
cis-2-Hexene	0.000	0.000	0.000	0.566	0.000	0.000	0.000	0.563
cis-2-Decene	-0.049	0.143	-0.106	0.000	0.068	0.204	0.164	0.000
cis-3-Octene	0.000	0.000	0.000	0.552	0.000	0.000	0.000	0.553
cis-3-Undecene	-0.049	-0.145	-0.104	0.000	0.067	0.206	0.162	0.000
trans-3-Decene	0.024	0.216	0.160	0.000	0.054	-0.253	-0.202	0.000
trans-4-Octene	0.000	0.000	0.000	0.536	0.000	0.000	0.000	0.536
trans-4-Decene	0.006	0.256	0.195	0.000	-0.038	-0.277	-0.219	0.000
cis-4-Decene	0.000	0.000	0.000	-0.554	0.000	0.000	0.000	-0.553
cis-5-Undecene	0.000	0.000	0.000	0.554	0.000	0.000	0.000	0.554
trans-5-Decene	-0.017	0.279	0.217	0.000	-0.017	-0.279	-0.217	0.000
cis-6-Dodecene	0.000	0.000	0.000	-0.554	0.000	0.000	0.000	-0.554
trans-6-Tridecene	0.009	-0.249	-0.184	0.000	0.024	0.256	0.192	0.000

HOMO COEFFICIENTS OF SOME $C^1 = C^2$ ALKENES

Second, interaction between LUMO of the alkene and HOMO of the stationary phase, which appears more useful because for all alkenes only the p_z orbital of the two carbon atoms of a C = C moiety has values different from zero (see Table I), and Klopman's equation can therefore be applied. The values of $-\Delta E$ for C¹ = C² alkenes, where

$$-\Delta E = \frac{2\beta^2 (C_{\text{LUMO of } C^1}^2 + C_{\text{LUMO of } C^2}^2)}{-E_{\text{LUMO}}}$$
(6)

or

$$-\Delta E \propto \frac{C_{\text{LUMO of } \text{c}^1}^2 + C_{\text{LUMO of } \text{c}^2}^2}{-E_{\text{LUMO}}} \text{ (in } 2\beta^2 \text{ units)}$$
(7)

are listed in Table I. The conventional values $C_{HOMO} = 1$ and $E_{HOMO} = 0$ for the stationary phase are assigned in these calculations.

	1	1	6
--	---	---	---

TABLE IV

EXPERIMENTAL AND CALCULATED (FROM EQN. 8) / VALUES

Compound	Iexp	I _{calc.}	Error (%)
cis-2-Butene	417.8	413.5	1.03
cis-2-Pentene	505.4	506.9	0.30
cis-2-Hexene	604.9	604.5	0.07
cis-2-Heptene	704.7	700.4	0.61
cis-2-Octene	803.2	795.6	0.95
cis-2-Nonene	901.9	890.1	1.31
cis-2-Decene	1001.7	1002.1	0.04
cis-2-Undecene	1101.5	1103.1	0.15
cis~2-Dodecene	1201.7	1202.6	0.07
cis~2-Tridecene	1301.6	1301.4	0.02
trans-2-Butene	405.9	409.7	0.94
trans-2-Pentene	499 5	502.9	0.68
trans-2-Hexene	596.5	600.4	0.65
trans-2-Hentene	698 7	696.5	0.31
trans-2-Octene	797 5	791 7	0.73
trans-2-Nonene	896.4	886.9	1.06
trans-2-Decene	996 7	989.7	0.74
trans-2-Undecene	1096.6	1000.2	0.74
trans-2-Dodecene	1196.0	1180.6	0.58
trans-2-Doddoone	1297.0	1287 4	0.01
trans_2-Tatradacana	1396.0	1385 1	0.84
cis_3_Hevene	503.3	595.7	0.04
cis 2 Hentene	602.0	595.2 607 A	0.52
cis 3 Octore	790.9	791 5	1.05
cis 3 Nonone	107.0	701.5	0.27
cis 3 Decene	007.5	004.2	0.37
cis 2 Undecene	763.6	1097.2	0.10
cis-3-Ondecene	1065.5	1007.5	0.18
cis-3-Dodecene	1294.4	1100.5	0.29
cia 2 Tata dagana	1204.4	1200.5	0.34
trang 2 Horopo	501 1	506 2	0.20
trans-5-nexelle	J71.1 697 4	590.2	0.00
trans-3-Heptene	00/.4	790.9	0.92
trans-3-Octene	700.2 994 A	707.0	0.20
trans-3-Nonene	000.4	883.0	0.16
trans-5-Decene	900.0	904.2	0.10
trans-3-Undecene	1085.4	1083.1	0.03
Trans-3-Dodecene	1105.1	1104.0	0.02
trans-3-1 ridecene	1284.9	1283.0	0.10
trans-3-Tetradecene	1384.0	1381.1	0.23
cis-4-Octene	/88.2	/89.9	0.22
cis-4-inonene	885.4	880.2	0.09
cis-4-Decene	982.8	981.3	0.16
cis-4-Undecene	1080.5	1081.5	0.07
trang 4 Optomo	11/9.0 704 1	1104.3	0.42
trans-4-Octene	/04.1	190.3	0.62
trans-4-inonene	584.2 092.5	004 C	0.28
trans-4-Decene	982.5	984.2	0.17
trans-4-Undecene	1081.1	1003./	0.43
irans-4-Dodecene	1180.0	1160.0	0.30
cis-5-Decene	981.0 1079 7	982.0	0.04
cis-5-Undecene	10/8.2	10/7.5	0.00

GC BEHAVIOUR OF ALKENES

Compound	Iexp	Icalc.	Error (%)
cis-5-Dodecene	1175.6	1177.1	0.13
cis-5-Tridecene	1273.8	1280.8	0.54
trans-5-Decene	984.1	984.7	0.06
trans-5-Undecene	1081.8	1085.6	0.35
trans-5-Dodecene	1180.6	1185.8	0.44
trans-5-Tridecene	1279.5	1285.1	0.44
cis-6-Dodecene	1175.0	1172.5	0.21
cis-6-Tridecene	1271.2	1272.5	0.10
cis-6-Tetradecene	1368.6	1375.3	0.48
trans-6-Dodecene	1179.6	1185.6	0.50
trans-6-Tridecene	1277.4	1284.4	0.55
trans-6-Tetradecene	1375.7	1382.7	0.51
		Avera	ze: 0.41

TABLE IV (continued)

On the other hand, as can be seen in Table I, E_{HOMO} has significantly different values for alkenes of different homologous series and could also be considered to be related to these interactions. The equations I vs. E_T and $-\Delta E$ and I vs. E_T and E_{HOMO} reduce the standard deviation of eqn. 2 slightly, but if we consider these two factors jointly ($-\Delta E$ and E_{HOMO}) a large reduction in standard deviation results. This indicates that both parameters are directly related to the phenomenon of interaction between the alkenes and the stationary phase.

The equation for cis and trans isomers is

 $I = -10.772 E_{\rm T} + 169.035 (-\Delta E) + 1184.236 E_{\rm HOMO} + 1378.317$ (8) (N = 62, r = 0.9999, s = 4.66, F = 187611.79)

This is the most general equation representing the chromatographic retention of alkenes accurately (see Table IV). The first term $(-10.772 E_T)$ includes the molecular factor and the others represents the solute-stationary phase interactions.

REFERENCES

- 1 J. Takács, Zs. Tálas, I. Bernáth, Gy. Czakó and A. Fischer, J. Chromatogr., 67 (1972) 203.
- 2 J. Sanz, J. Calderón and M. V. Dabrio, An. Quim., 75 (1979) 408.
- 3 D. Papazova and N. Dimov, J. Chromatogr., 137 (1977) 259.
- 4 N. Dimov and D. Papazova, Chromatographia, 12 (1979) 720.
- 5 L. Soják, J. Hrivnák, P. Majer and J. Janák, Anal. Chem., 45 (1973) 293.
- 6 L. Soják, J. Hrivnák, I. Ostrovský and J. Janák, J. Chromatogr., 91 (1974) 613.
- 7 L. Soják, J. Krupčík and J. Janák, J. Chromatogr., 195 (1980) 43.
- 8 S. Rang, K. Kuningas, A. Orav and O. Eisen, Chromatographia, 10 (1977) 55.
- 9 J. R. Chrétien and J. E. Dubois, Anal. Chem., 49 (1977) 747.
- 10 J. E. Dubois, J. R. Chrétien, L. Soják and J. A. Rijks, J. Chromatogr., 194 (1980) 121.
- 11 J. R. Chrétien, J. E. Dubois, R. F. Hirsch and R. J. Gaydosh, J. Chromatogr., 207 (1981) 115.
- 12 L. Buydens, D. L. Massart and P. Geerlings, Anal. Chem., 55 (1983) 738.
- 13 R. C. Weast (Editor), Handbook of Chemistry and Physics, CRC Press, Cleveland, OH, 59th ed., 1979, p. F200.
- 14 F. Saura-Calixto, A. García-Raso and M. A. Raso, J. Chromatogr. Sci., 22 (1984) 22.
- 15 G. Klopman, J. Amer. Chem. Soc., 90 (1968) 223.
- 16 L. Salem, J. Amer. Chem. Soc., 90 (1968) 543 and 553.